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Calculation of the temperature dependence of the 
vibrational modes of molybdenum 
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IA 50011, USA 
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Abstract. First-principles total energy calculations are used to derive the anbar- 
monic coupling parameters for the phonon-phonon interactions in molybdenum. The 
calculated frequency sbifts from 10 to 295 K are in reasonably good agreement with 
experiment. The derived anharmonic forces are analysed in t e m  of a central poten- 
tial and bond-bending terms wllich are found to be significant. 

1. Introduction 

Improvements in computing speed and the development of modern computational 
methods in the past decade have made routine the first-principles calculation of many 
material-dependent properties including vibrational frequencies, bulk moduli, cohe- 
sive energies, and phase transition pressures [l]. In particular, detailed first-principles 
studies of selected phonon vibrational modes can be made using precise calculations 
of the total energy changes associated with atomic displacements [2]. Unlike tradi- 
tional perturbative methods, this ‘frozen phonon’ method allows the total energy to 
be calculated for large distortions away from the high symmetry, equilibrium geome- 
try. Thus, accurate information about anharmonic interactions is provided by these 
calculations; however, extracting this information can be somewhat involved. In this 
article we use the anharmonic terms derived from total energy calculations to ob- 
tain the phonon-phonon coupling strengths for MO. The temperature dependence of 
the lattice vibrational modes are then determined and compared with experimental 
measurements [3-51. 

Our calculations for MO were motivated by the existence of detailed experimen- 
tal measurements of the phonon spectra of MO over a wide temperature range (from 
4.2 to 1200 K) 151. Previous first-principles total energy calculations [Z, 61 have been 
successful in giving a good description of the bulk structural properties and the fre- 
quencies of some phonon modes in bulk MO. The calculational procedures used in the 
present calculation are similar to a previous calculation [7] in which we have examined 
the anharmonic shifts in the phonon modes of the high temperature BCC pbase of Zr. 
However, unlike the case of Zr, we find that in MO the anharmonic forces are not well 
described by a short-range central-force model and we had to include the effects of 
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bond-bending forces due to the emerging importance of directional bonding as the d 
band occupation is increased. 
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2. Method of calculation 

The temperature dependence of the phonon frequencies are calculated within the per- 
turbative formalism developed for the treatment of anharmonic effects in crystals [SI. 
The total crystalline potential energy is expanded through fourth order in a power se- 
ries in the displacements of the atoms from equilibrium. The lowest-order perturbative 
expressions include treatment of the third-order expansion coefficient to second order 
in perturbation theory and first-order perturbative terms involving fourth-order ex- 
pansion coefficients. For the phonon modes of interest, the unrenormalized harmonic 
frequency can be obtained from first-principles frozen-phonon calculations and the 
temperature dependence of the frequency can then be evaluated using the following 
formula [SI: 

n q d s  - ’ q d a  + nq& + nq,A, -k 1 
h q l A z  + h q z A l  -k h q d s  h q 1 X ,  + %d2 - %%A% 

] (1) %A> - nqA - nqz& nq3Aa + + 
h,,h - %,A> + T ” l . A s  h q x l ~  - h q A  - h q A  

where m is the atomic mass, wqx is the frequency of the Xth phonon mode with 
wavevector q. The effect of temperature enters through the phonon occupation factors 
nqA. Finally, d3) and d4) are the third- and fourth-order anharmonic phonon-phonon 
coupling matrix elements obtained from an expansion of the crystal energy in powers 
of the atomic displacements ui .  

To evaluate the frequency shifts of the phonons as a function of temperature, 
we employed a short-range model for the anharmonic interaction. In this model the 
anharmonic interactions in MO are described by a sum of a two-body central potential 
p ( r )  and an anharmonic three-body Keating potential ubb [9]. The Keating potential 
is used in order to include the effects of directional bonding which we found to be 
important in determining shear elastic constants and the phonon spectrum in MO 

Here we give detailed expressions for the anharmonic coupling parameters used in 
our model. We assume the crystal has one basis atom per unit cell which is true for 
the BCC lattice. The central potential is characterized by two parameters d and p: 
the second derivative of the central potential is given by 

Dol. 

p“ = d / ( r z )P .  ( 2 )  



where Rh represents a sum over the real space Bravais lattice vectors. In our calcula- 
tions, the sum includes terms up to the second nearest neighbours. The a ' s  indicate 
the Cartesian directions I, y and z. ;(PA) is the polarization vector of the qX phonon 
and u$!..,.(Rh) are expansion coefficients of the central potential which have the 
form: 

for the fourth-order terms, and 

for the third-order terms. In equations (4) and (5) the central potential is assumed to 
be a function of yZ and the derivatives are taken with respect to rz.  

The anharmonic bond-bending potential has the form 

where 

t 011 , . = (zi - z,) (9 - z.) - (R; - R,) (Rj - R,) 
- -(Ri -%).(~j -U,)+(€$ - R ~ ) . ( u ~ - u ~ ) + ( u ~ - ~ ~ ) ' ( ~ ~  -u~). 

(7) 

The summation o is over all atoms, and the sum i, j is over all pairs of nearest neigh- 
bours of 0. R, is the equilibrium position of the ith atom and zi = Ri + wi is the 
displaced position of the ith atom. We express the function ubb as a polynomial: 

%(() = AzC2 + A3t3 -t A4t4. (8)  

Using this expression for the anharmonic interaction, we can expand the energy 
of the crystal in powers of the atomic displacements U and obtain expressions for the 
contribution of the bond-bending contributions to u ( ~ )  and ~ ( ~ 1 :  



with 

Thus within OUT model, the anharmonic forces in MO are determined by five pa- 
rameters d ,  p ,  A,,  A ,  and A,. The values of these parameters can be determined 
by fitting to the anharmonic terms we obtained from first-principles frozen-phonon 
calculations of selected phonon modes. 

The first-principles frozen-phonon calculations were performed within the local- 
density-functional formalism using a first-principles pseudopotential method [l]. The 
only approximations involve the treatment of the exchange-cotrelation energy using 
the local density functional formalism, the frozen core approximation, and the Born- 
Oppenheimer approximation. Technical details of the calculations were presented in 
earlier articles 11, 21. For the analysis of a particular phonon the total energy is 
evaluated as a function of the magnitude of atomic displacements which are chosen 
to be in the directions corresponding to the polarization vector of the phonon mode 
under consideration. With these so called 'frozen-phonon' calculations a complete 
self-consistent band structure calculation is performed for each lattice configuration 
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so that the full screening and the electron-phonon coupling are accurately determined. 
Calculations were performed for the TI, T, and L phonons at the N-point ((i, 4,O)  in 
units of 2?r/a), the L and T phonons at the w-point, (2,  $,$), the threefold degenerate 
phonon at P, (i, i, i), and the L and T phonons at (a,O,O), (the G-point). The 
change of the energy for the distorted lattice can be expanded in a power series in the 
displacements of the atoms 

AE = as2 + bS3 + cS4 + .. .. (15) 

The harmonic coefficient, a,  and the fourth-order coefficient, c, are conveniently dis- 
played in an E / s 2  against S2 plot. (For many of the phonon modes studied the 
coefficient b is zero by symmetry. However, in the special case when the wavevector q 
of the phonon under consideration satisfies 3 9  = G for some reciprocal lattice vector 
G, then that mode can have a non-zero thud-order self-interaction.) As an example 
we show in figures 1 and 2 the results of the energy against displacement calculations 
for two of the N-point modes. The intercept gives a ,  the harmonic coefficient, and the 
slope for small 6’ gives c, the fourth-order coefficient. For the L mode, higher-order 
terms are evident for large displacements. The numerical precision of these calcula- 
tions was monitored, and for the T, mode convergence required sampling 350 k-points 
in the irreducible eigth of the Brillouin zone. Similar grids were used for the T, and L 
phonons at the N-point. 108 12-points were used for the P-point and the G-point. The 
grid for the w-point contained 57 ks for the L phonon and 56 ks for the T phonon. 
Data from the H-point were not included because the presence of a Kohn anomaly at 
the H-point [Ill. The phonon frequencies derived from the harmonic coefficients are 
only valid a t  zero temperature. 

10.0 

0.000 0.001 0.002 0.003 
(6/0)* 

Figure 1. The first-principles total energy against displacement results for the TI 
N-point vibrational of MO. The results are plotted as A E / f f  against s2 so that the 
slope gives the fourth-orderanh-oniccoeffcient. (The latticeconstant o = 3.14 A.) 

The first-principles calculations are involved and costly, so that only a few se- 
lected phonons may be studied via the ‘frozen phonon’ approach. To extrapolate the 
first-principles information about anharmonic interactions from a few phonons to the 
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t6/0)' 
Figure 2. Same as figure 1 hut for the longitudinal mode at the N-point.The cur- 
vature at larger dislpacements is evidence for higher-order anharmonic t e m .  

general anharmonic interactions among all the phonons we used the previously de- 
scribed model. The parameters of the model were determined from a least-squares fit 
to the fourth-order expansion coefficients derived from the frozen phonon calculations. 
Table 1 lists the coefficients and the corresponding values from the fitting function. 
The values of the parameters obtained from the fit were: d = 4.59 x lo5 Ryd (A*)p, 

p = 9.80, A,  = 0.02515 A-4, A, = 0.00181 A-6, A,  = -0.00118 A-*. We have also 
attempted to fit the firstprinciples anharmonic force constants using only central force 
terms. For MO we found that, unlike the previous case of Zr [7], the simple central 
force model gives a very poor fit to the firstprinciples results. 

Table 1. Valuesofthecalculatedh-onic terms(lheparameteroincquation(l5)), 
the corresponding harmonic phonon ftequencies, and the experimentally measured 
frequencies at 4.2 K (from [SI). Also given are the calculated fourth-order expansion 
coefficients (the parameter c in equation (15)) along with the values fmm the fit to 
the first-principles results obtained with the mode1 described in the text. 

c (Ryd A-z) Phonon frequency (THz) 

K Cal. Fit a(RydA-*) Cal. Exp. 

($io) L -350  -3.11 0.916 7.94 8.24 f 0.07 
Ta -2.83 -2.56 0.485 5.78 - 

($$$) L -1.87 -2.11 0.351 6.02 6.14 +. 0.05 
T +0.18 f0.16 0.459 6.89 7.02 f 0.06 

($$$) L, T t0.25 +0.10 0.289 6.30 6 . 4 6 f  0.06 

($00) L f0.08 +0.10 0.365 7.09 7.22 * 0.05 
T fO.15 +0.15 0.136 4.33 4.61 k 0.02 

The summations in equation (1) were performed by dividing the Brillouin zone into 
small cubes with the coupling strengths assumed constant within each cube and the 
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integration of the energy denominator being performed analytically. To test conver- 
gence the number of cubes along r to H was varied between 10 and 20. The important 
fourth-order term was fully converged, while the less significant third-order term was 
uncertain by k 20%. 

3. Results , 

Table 2 shows the results for the phonon frequency shifts from 10.5 to 295 K obtained 
from our calculations, and compared with the results of neutron scattering measure- 
ments. With the exception of the phonon at the H-point, most of the calculated results 
agree rather well with experiment. At the H-point, ( l , O , O ) ,  our calculations predicted 
a large downward shift whereas the experiments showed a small upward rise in phonon 
frequency with temperature. It is well known that there is a sharp Kohn anomaly for 
the phonon dispersion curve of MO at the H-point. The discrepancy between our cal- 
culations and experiment are most likely due to thermally caused changes in the sharp 
Fermi-surface-nesting which are not taken correctly into account within our present 
calculations [II,  121. We also predicted that there should be a big downward shift in 
frequency for the TI mode at the N-point. Unfortunately, we have been unable to 
find any experimental data for comparison at that point. In the table we have also 
separated the calculated phonon frequency shifts into contributions from the central 
force, the angular force and thermal expansion. We can see that the thermal expansion 
contribution is smaller in magnitude than the other two contributions which tend to 
be opposite in sign: the angular forces cause a softening with increasing temperature 
whereas the central forces cause a hardening with temperature. Qualitatively similar 
behaviour was also found in tetrahedral semiconductors [13]. 

Table 2. The calculated shifts in frequency from 10.5 to 295 K for selected phonons 
of MO. The experimental data from 151. Also listed are the individual theoretical 
contributions for the anharmonic central and bond-bending forces as well as the 
volume expansion. 

(+ io )  L 0.184 -0.154 -0.092 
TI -0.009 -0.225 -0.025 
Tz 0.168 -0.120 -0.048 

( $ E )  L 0.036 -0.194 -0.027 
T 0.154 -0.162 -0.073 

(11') 0.097 -0.144 -0.059 

($00) L 0.096 -0.207 -0.056 
T 0.144 -0.158 -0.046 

(1 0 0) 0.270 -0.389 -0.078 

2 2 2  

-0.06 
-0.26 
0.00 

-0.19 
-0.08 

-0.11 

-0.17 
-0.06 

-0.20 

-0.11 * 0.07 
? 
0.00 f0.07 

-0.17 * 0.05 
-0.18 f 0.10 

-0.15 * 0.08 
-0.20 f 0.06 
-0.10f 0.02 

0.02 f 0.05 

In summary, perturbative calculations have been performed for the shift in fre- 
quencies of selected phonon modes in MO. It is found that it is necessary to take into 
account angular forces arising from directional d-bonding in order to give a reasonable 
description of the anharmonic terms obtained from first-principles frozen phonon cal- 
culations. The results agree reasonably well with the available experimental data [5].  
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